
Zero-Offset Demultiple – Efficient Demultiple
of Near-Offset Marine Seismic Data in 

RadExPro



Problem of Multiple Waves

Primaries

Multiples



Types of Multiples

Internal multiple Reflector peg-leg multiple

Water bottom multiple Reflector multiple
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Multiple Elimination

o Main Multiple Elimination Techniques

1. Periodicity of Multiples – Deconvolutions
-- very limited usability: flat seafloor only, very shallow water, not very efficient 

2. Different Move-Out between Multiples and Primaries -- Radon/F-K/Tau-Pi demultiple, slant-stack, etc.
-- fail for near offset seismic data (Yilmaz, 1989)

3. Wavefied Prediction and Subtraction – SRME
-- work well for multi-channel data, time-consuming

HR/URH specific – Zero-Offset Demultiple
-- for single-channel near-offset data
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1. An approximate model of multiples created from data itself:

o Autoconvolution of each trace – model of ALL surface-related multiples
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Zero-offset demultiple theory

2. Model is subtracted from the data

o Our model is inaccurate, both in kinematics and in dynamics. 

Can we simply subtract it?
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Zero-offset demultiple theory

2. Model is subtracted from the data

o Subtracting with inaccurate kinematics:

Shift of 1 sample Shift of 2 samples



Multiple Elimination: Zero-Offset Demultiple

Zero-offset demultiple theory

2. Model is subtracted from the data

o Subtracting with inaccurate dynamics:
o Autoconvolution results in change of 

wavelet

o Adequate amplitude decay 
compensation is difficult to achieve
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Zero-offset demultiple theory

2. Model is to be subtracted from the data ADAPTIVELY
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 txK , Initial model of multiples for this trace

f(x,t) are filters instead of coefficients, 

this description of distortions is 

essentially more general and includes 

waveform fluctuations caused by, 

particularly, frequency-dependent 

attenuation as well as amplitude 

variations 

The task of adaptive subtraction of the model of multiples from the initial wavefield is posed in the 

following way: for each trace it is required to define f(x,t) minimizing in RMS sense the following 

functional:

This task can be solved with the help of standard techniques, particularly with the 

help of Wiggins-Robinson-Levinson algorithm for multi-channel filters.

Zero-offset demultiple theory – Adaptive Subtraction Algorithm

t

k

x Current trace number

TWT time

 txZ , Current trace of the original wavefield

Index of a neighboring trace from the current trace (from –M to M)



As a result of this step:

For each trace X we calculate a filter f(x,t)

This filter minimizes everything that is in common between the original trace and the model of 

multiples at traces within the neighborhood (x-M, x+M)

STRONG SUPPRESSION OF MUILTIPLES
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Final step:

We assume that the filters f(x,t) shall not be changing too abruptly from trace to trace.

So we average the filters over N neighboring traces:

THIS STEP HELPS PRESERVING PRIMARIES
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Single channel boomer data – before multiple elimination

Data acquired with boomer and single-channel streamer
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Single channel boomer data – after zero-offset demultiple

Data acquired with boomer and single-channel streamer
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Data acquired by GEO MARINE 3D UHR system, with sparker
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Data disturbed by sea swelling
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Data acquired with Bubble Pulser (by Falmouth Scientific) and single-channel streamer

Data disturbed by sea swelling – model of multiples



Multiple Elimination: Zero-Offset Demultiple

Data disturbed by sea swelling – demultiple is less efficient

Data acquired with Bubble Pulser (by Falmouth Scientific) and single-channel streamer



o Zero-Offset Demultiple technique based on approximate modeling of 
multiples followed by adaptive subtraction, was implemented and 
tested. 

o It was shown that the method can be very efficient for near-offset 
HR/UHR marine seismic data acquired with different types of 
sources. 

o Greater offsets and sea swelling reduce the efficiency of the 
algorithm
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Thank you for attention!
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